Explicit Near-Ramanujan Graphs of Every Degree

نویسندگان

چکیده

For every constant $d \geq 3$ and $\epsilon > 0$, we give a deterministic $\operatorname{poly}(n)$-time algorithm that outputs $d$-regular graph on $\Theta(n)$ vertices is $\eps$-near-Ramanujan; i.e., its eigenvalues are bounded in magnitude by $2\sqrt{d-1} + \epsilon$ (excluding the single trivial eigenvalue of $d$).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit Constructions of Ramanujan Complexes

In [LSV] we defined and proved the existence of Ramanujan complexes, see also [B1], [CSZ] and [Li]. The goal of this paper is to present an explicit construction of such complexes. Our work is based on the lattice constructed by Cartwright and Steger [CS]. This remarkable discrete subgroup Γ of PGLd(F ), when F is a local field of positive characteristic, acts simply transitively on the vertice...

متن کامل

Ramanujan Graphs

In the last two decades, the theory of Ramanujan graphs has gained prominence primarily for two reasons. First, from a practical viewpoint, these graphs resolve an extremal problem in communication network theory (see for example [2]). Second, from a more aesthetic viewpoint, they fuse diverse branches of pure mathematics, namely, number theory, representation theory and algebraic geometry. The...

متن کامل

Near-Optimal Induced Universal Graphs for Bounded Degree Graphs

A graph U is an induced universal graph for a family F of graphs if every graph in F is a vertex-induced subgraph of U . For the family of all undirected graphs on n vertices Alstrup, Kaplan, Thorup, and Zwick [STOC 2015] give an induced universal graph with O ( 2n/2 ) vertices, matching a lower bound by Moon [Proc. of Glasgow Math. Association 1965]. Let k = dD/2e. Improving asymptotically on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Computing

سال: 2021

ISSN: ['1095-7111', '0097-5397']

DOI: https://doi.org/10.1137/20m1342112